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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Action principles for the elastic solid and the perfect fluid 
in general relativity 

D. SALT? 
Department of Philosophy, McGill University, Montreal 11 0, Canada 
MS.  receized 10th April 1969, in reaisedform 30th Jul-$1 1970 

Abstract. Action principles using the Eulerian description are proposed for the 
elastic solid and perfect fluid in general relativity. By taking into account the 
constraints on the independent variables appearing in the Lagrangian density, it 
is shown that these action principles are equivalent to those using the Lagrangian 
description, which have been given previously. 

1. Introduction 
Action principles for elastic solids and perfect fluids in general relativity have 

been given by DeWitt (1962) and Taub (1954). These authors make use of the 
Lagrangian description, as opposed to the Eulerian description. The  action principle 
for the electromagnetic field is naturally given in the Eulerian description, and there- 
fore the interaction of the electromagnetic field with matter is more easily described 
if an action principle for matter is available in this description. Such action principles 
for both the elastic solid and the perfect fluid are given here. 

The  Lagrangian densities in both cases are constructed to conform to the 
following formalism (Pauli 1958). Let R be the curvature scalar of the spacetime 
manifold, and 9 the associated scalar density, so that 9 = (g)lI2R,whereg = - detgik 
and the g f k  (i, K, = 1, 2, 3, 4) are the components of the fundamental tensor; the 
associated fundamental quadratic form 0 = g,, dxi dxk is assumed to have signature 
+2,  in accord with Synge's notation (Synge 1960). Then if 2 is the Lagrangian 
density associated with the presence of matter, the gravitational field equations follow 
from the action principle 

6A = 0 (1) 
with 

A = [ ( - :  +2 ) d4x. 

In  (2), K is the gravitational constant, and the integral is over a fixed region of the 
spacetime manifold. The action principle (1) holds for those variations of the g i k ,  

and the other variables occurring in 9, that vanish on the boundary of the region of 
integration. 

The gravitational field equations obtained from (1) are 
@ k +  K y i k '  = 0 

where gfle is the tensor density associated with the Einstein tensor Gik and Pk is 
defined by 

t Present address: 2 Crown Hill, Ashdon, Saffron Walden, Essex, England. 
501 



502 D. Salt 

8 2 / 8 g j k  denotes the Lagrange derivatives of 9 with respect to the field g,,. The 
matter field equations are not obtained directly from (I) ,  however, for in the Eulerian 
description, the variables describing the motion of a material continuum cannot be 
varied independently, but must be subjected to certain constraints. The  constraints 
necessary in the nonrelativistic case have been discussed recently by Seliger and 
Whitham (1968), and in the special relativistic case by Penfield and Haus (1967). The  
constraints used here are 

gzkWIWk+ 1 = 0 (4) 
w q X K  = 0 ( 5 )  
&wt)  = 0.  (6) 

The first constraint, (4), represents the condition that the world velocity vector wt of 
the motion should be a unit timelike vector. (5) is the relativistic generalization of 
Lin's constraint (Seliger and Rhitham, 1968), the XI<( K = 1,2, 3) being a set of three 
scalar fields labelling the material points of the continuum. (6) represents the con- 
servation of mass, p being the mass density, which transforms as a scalar density. 

The  matter field equations can now be derived from (1) using the method of 
Lagrange multipliers to take account of the constraints (4)-(6). Let K, PK, and y be 
the Lagrange multipliers then as far as the derivation of the matter field equations is 
concerned, (1) is equivalent to 

where 
6A = 0 (7) 

A' = !" -Yf d4x 

and 
2' = 2 + R(g,,wiu.'li + 1) + P K W , 2 , X X  +yai(p""). 

The Lagrange multipliers are to be regarded as variables on an equal footing with the 
g,, and the variables used to describe the material continuum. Their variation in 
(7) leads simply to the equations of constraint (4)-(6). 

2. The elastic solid 

form for 9, 

where E, the internal energy density per unit mass, is a function of the g i ,  and the 
aiXX only. For 9 to be a scalar density C must be an absolute scalar, and must 
therefore be expressible in terms of scalars formed from the g , k  and the 8JK. T o  
ensure that the theory reduces to classical elasticity theory in the nonrelativistic 
approximation, is assumed to depend only on the world scalars CxL defined by 

The elastic solid is assumed here to be characterized by the following functional 

2 = -p (  1 + r, )( -gi,wfWk)1!2 (8) 

-1 

- 1  c KL = g k 1 8 k X X a , X L .  
-1 

The CxL represent the components of the inverse of Green's deformation tensor 
in the instantaneous rest frame of the material at a given spacetime point (Toupin 1957, 
Grot and Eringen 1966). The  derivatives of C with respect to g,, and aiXK will be 
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and 

The  tensor density Yik  associated with the Lagrangian density (8) is 

= p (  1 + e ) W i W k  - t * k  (9) 

where the constraint (4) has been used after the differentiation has been carried out. 
The  tensor density tik is the relativistic generalization of the Cauchy stress tensor 
defined by Toupin (1960) and is defined by 

The field equations that follow from (7 )  with the special form (8) for 9 are 

p( 1 + c )Wi + 2CIzui +pKaiXK -pB2y = 0 (10) 

1+c + W i z #  = 0 (11) 

together with the constraint equations, which have been used to simplify the above. 
Multiplying (10) by wi  and using (1 1) leads at once to the result that CI = 0, so that 
(10) can be replaced by 

p(l +x)wi+pKaiXK-p3iy = 0.  (13) 

Multiplying (13) by wlZ and differentiating with respect to x k  leads, after using the 
constraint equations , to 

Substituting in (14) for pwkalcy and 8kY) using (11) and (13)) leads, again after some 
manipulation and the use of constraints, to 
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Now 

and therefore (15) reduces to 

Also 

therefore 

Thus (16) becomes 

ai(gklWkwE) = 0 

Z W k =  -1 k 1 "  
k i  Zw o t g k l *  

a k ~ ; - & P ' a i g k i  = 0 
therefore 

vky:= 0 (17) 
where v k denotes covariant differentiation defined with respect to the Christoffel 
symbols formed from the g , k .  

Equation (17), together with the equations of constraint (4)-(6), constitutes the 
system of field equations for the elastic solid obtained in the more usual Lagrangian 
description (DeWitt 1962). The above argument shows, therefore, that every 
solution of the field equations following from the action principle (7), with the special 
form (8) for 9 is also a solution of the field equations obtained from the usual action 
principle. T o  complete the proof of the equivalence of the two systems of the field 
equations, it remains to show that any solution of (17) and the constraints (4)-(6) 
is also a solution of the equations (10)-(12). That is, given p ,  ut, X K  and g,, as 
functions of the coordinates satisfying (17) and (4)-(6), it must be shown that there 
exist functions Q, P E ,  and y such that the two sets of functions taken together satisfy 

This can be done as follows. First put CI = 0 and let y be any solution of ( l l ) ,  
regarding (11) as a first-order partial differential equation for y. Then the functions 
,8, are uniquely determined by (1). Explicitly, define 12 quantities x; by the 
equations 

(lo)-( 12). 

(18) 

(19) 

i 
ZL'tXK = 0 

K 
X k E i X K  = 8 L  

(18) and (19) uniquely define the x:, for the four vectors w,, a,XK are linearly 
independent (Toupin, 1957). Using (18) and (19), it follows from (10) that 

(20) 
t 

P K  = P x K a t Y *  

Equations (10) and (11) are now automatically satisfied; it remains to show that (12) 
is satisfied. Using (20) the lhs of (12) becomes, apart from sign, 
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Useful formulas in the reduction of (21) are 

k k  F2Xxx, = g,  + W I W k .  

Coupling these results with (1 1) and (17), it is a matter of straightforward, if tedious, 
calculation to show that (21) vanishes, and hence that (12) is satisfied by the above 
choice of M, PK, and y. Thus the equivalence of the systems of equations following 
from the action principle proposed here and the more usual one is established. 

3. The perfect fluid 
The scalar density 9 for a perfect fluid has the same form (8) as that for an 

elastic solid, but the internal energy C is now assumed to depend only on the mass 
density po as measured in the instantaneous rest frame of the material. The  relation 
of this density to p can be obtained from a consideration of the invariant volume d,r 
in the three-space orthogonal to wz at the spacetime point xz. Let A i  ( x  = 1, 2, 3) 
be an orthonormal triad in this 3-space, and consider the volume element spanned 
by the infinitesimal vectors dEIA(",, dt2h(k,, dt3A(13). The invariant volume. element 
d , ~  is just df l  df2 df3, while the corresponding element of extension in the 4-space is 
given by the antisymmetric tensor 

d Vtkq = 3 ! A,:", A& A:; d,r, 

The dual vector density dV, is 

where E l k m n  is the permutation symbol. The vector density 

is orthogonal to each of the A ( & )  by inspection, and must therefore be proportional to 
ZL', = gnmwm since w z  is also orthogonal to all the A(:). Therefore, 

yn = Y g n m W m  

g'"y,y, = y2glkw,wk. 

g PYIYn = 

and 

But by direct calculation, it may be shovn that 

so that 
y = g - 1 2  ( - g z k u ; ~ W " - 1 ' 2 .  

p o  may be defined by the relation 

p o  d 3 ~  = -pwn dV, 

A 3  



506 D. Salt 

Hence 

Sotice that the factor in brackets equals unity when the constraint (4) is taken into 
account, but it is essential that this simplification is not made until after the required 
variations have been carried out, since it is the particular functional dependence of 9 
on its independent variables, rather than its actual value, which is important. With 
this proyiso, the following derivatives may be noted : 

Using the last of these results, the tensor density Y a k  for the perfect fluid may be 
calculated to be 

F i k  = p( 1 + 2 )=iWk - t i k  

where 

The scalar pressure p may be defined by 

ac 
P = P o 2 ,  

dP0 

The field equations corresponding to the action principle ( 7 )  are 

ac 
GPO 

p ( 1 +  ~ ) ~ Z + p p o ~ W i + 2 X = i + P K a i X K - P a l Y  = 0 (22) 

22 , 

CPO 
1+c + P O ,  +wtaiy = 0 

which once again must be augmented with the equations of constraint (4)-(6). In  
exactly the same way as for the elastic solid, it may be shown that elimination of the 
Lagrange multipliers leads to the equation 
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As in the case of the elastic solid, (25) and the constraint equations (4)-(6) make 
up the usual field equations, and so the elimination of the Lagrange multipliers shows 
that every solution of (22)-(24) and the constraints is also a solution of the usual field 
equations. That every solution of the latter system of equations is also a solution of 
(22)-(24) again follow7s from a tedious calculation. CI may be put equal to zero, and 
y may be taken to be any solution of (23), whereupon PK is uniquely determined by 
(22). The vanishing of the left hand side of (24) then follows from (25), and hence, 
just as in the case of the elastic solid, the equivalence of the usual system of field 
equations with that following from the action principle (7) ,  is established. 

4. Conclusions 
Action principles have been proposed, in the Eulerian description, for two special 

cases in continuum mechanics, the elastic solid and the perfect fluid. It has been 
shown, by taking into account the constraints on the independent variables in the 
Lagrangian density, that the action principles used here are equivalent to those 
usually used, which employ the Lagrangian description. A later paper discussing 
electromechanical interactions will illustrate the advantages of the Eulerian description 
in this respect. 
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